

Deliverable D1-8: Public Database

Ghent University
Delft University of Technology
Delivery date 1-8-2024
Dissemination level
Version V[1.0]

Introduction

Deliverable D1-8 of Work Package 1 Functional grading provides in the form of a database an overview of all the test results obtained during testing of the coupons.

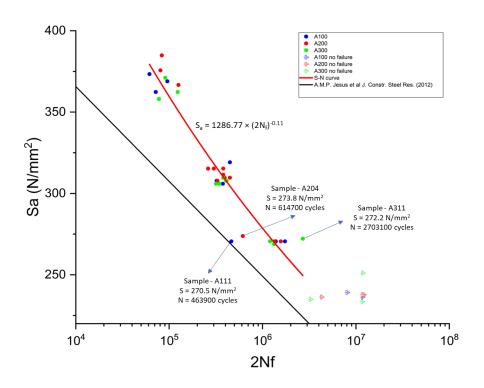
This includes the intended materials for the printing of the coupons. It should be mentioned that not all materials initially indicated are actually applied. The proposed materials and the characterisation techniques envisaged are also included in this page.

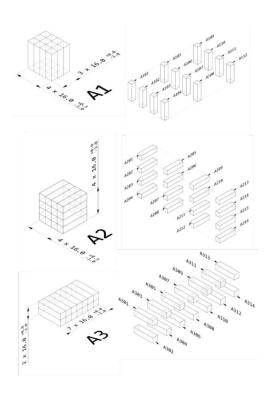
In the subsequent sheets the test results of each of the demonstrators are mentioned. Details of the wires applied and test results can be found in the deliverable 1.1, 1.3 and 1.5.

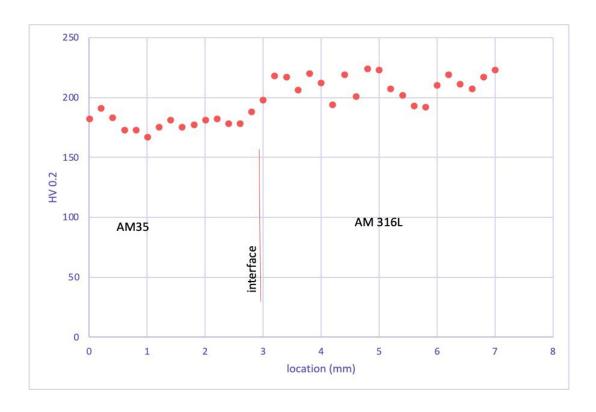
page 4	A1 database: Testing results demonstrator A1 Coupons (MAN)
page 9	A2 database: Testing results demonstrator A2 Coupons (EDF)
page 13	B1 database: Testing results demonstrator B1 Coupons (V&B)
page 18	B2 database: Testing results demonstrator B2 Coupons (GKN)
page 21	B3 database: Testing results demonstrator B3 Coupons (Shapers)
page 27	B4 database: Testing results demonstrator B4 Coupons (Gorenje)
page 29	B5 database: Testing results demonstrator B5 Coupons (Gorenje)
page 31	B6 database: Testing results demonstrator B6 Coupons (Kuznia-Jawor)

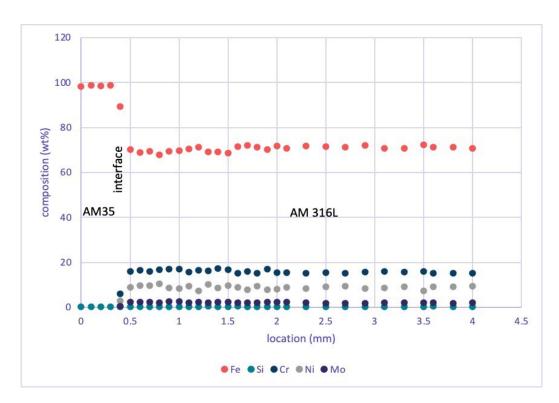
																										Metallogr	ranhu												
												G	RADED SPEC	MENS - PRO	POSAL									Specimens	s produced	Optical		D TEM *1			5 Tensile at	Impact	Microhar	d Corrosion	Fatigue			Abrasive	Scratch
							_			_								1						а	t:				analysis *	2	elevated	(Charpy)	ness	(OCP)		roughness	er *3	wear	~
No.	Demonstr End-user	n c	dimensions test coupon (lxwxh) in mm	625/S355 or eventually S460	718 [heat treatment]/S355	316L/S355	2205/8355	2207/5355		1000/024	410/5355	alloy 36	graded invar 55NiFe/spheroid	graphite iron Station Station	Iron-based hard facing/spheroid graphite iron	hard facing /HSS	NAB/cast iron	NAB/HSS	Hard-faced, Nb/ X37CrMoV5-1.	Hard-faced Mo/ X37CrMoV5-1.	Hard-faced, V/ X37CrMoV5-1.	oV5-	Hard-faced, Co/ X37CrMoV5-1.	by date:	Naval Group, by date:	TU Delf	UGen	NGen	TU Delf	TU Delf	PWF	TU Delf	PWR/TUE	TU Delf	UGen	PWR?	TU Delf	PWF	PWF
	Propeller* MAN ES	s	wall 200x60x300, surface graded 200x100x20	Yes #1	Yes	Yes #2	Yes #3	Yes																M9 dec20			Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes				
A-2	Mobile EDF ring hydroelect ric plant	2 1	wall monomaterial: 200x100x80/30, pimaterial:			Yes	Yes	Yes																	M9 dec 20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				Yes	
B-1	Mould for Villeroy8 bathtub och showface	Ware 2	surface sample 200x100x20, 200x8x150 (S355); Graded wall						Yes	Yes														M4 july 20		Yes	Yes	Yes	Yes				Yes	Yes		Yes			
B-2	Mould for GKN TP	Aerospace v	wall 150x25x200								Yes	Yes												M8 nov 20		Yes	Yes		Yes				Yes				Yes		
	Injection Arrk mould for Shapers plastic parts		200/100x100x50										Yes	Yes											M10 jan 21	1 Yes	Yes	Yes	Yes			Yes	Yes	Yes				Yes	Yes
B-4	Forming Gorenje die for steel parts	Automotiv 2 e	200x100x20												Yes	Yes								M12 March 2		Yes	Yes	Yes	Yes			Yes	Yes					Yes	Yes
B-5	Forming Gorenje die for stainless steel parts	goods	200x100x20														Yes	Yes						M7 March 21		Yes	Yes	Yes	Yes				Yes					Yes	Yes
B-6	Hot Kuźnia forging die Jawor (repair)	Heavy 2 lifting	200x100x20																Yes	Yes	Yes	Yes	Yes	5-mei-22		Yes	Yes	Yes	Yes		Yes + Troom		Yes					Yes	Yes

*X-Ray tomography in case required
*1 TEM in case required
*2 EDS/EPMA
*3 CTE, multi-axis expansion
*4 optical (keyence/confocal)
*5 TUD callibrated equipment, not ISO certified

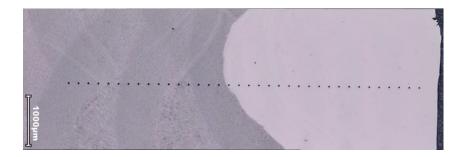

monomaterial AM35 tensile testing

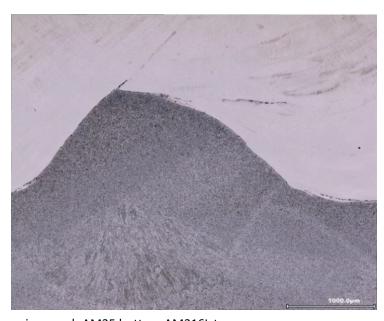

AM35


		Specimen ID	Notes	E_{mod}	F at 0.2% plastic strain	Upper yield point	F _{max}
Legend	No.			GPa	MPa	MPa	MPa
	3	A506		230	408	436	503
	6	A501		236	407	430	515
	7	A502		193	404	417	503
	8	A503		199	431	451	527
	10	A504		231	398	422	501
	16	A505		209	432	463	531
	17	A507		190	403	428	508
	18	A508		206	364	391	460
	19	A401		197	392	409	498
	20	A402		210	429	458	523
	21	A403		201	391	413	508
	22	A404		201	412	438	510
	23	A405		201	394	415	506
	25	A406		201	394	406	505
	26	A407		196	393	405	496
	27	A408		215	413	433	507


		dL(plast.) at F _{max}	$dL at F_{max}$	F_{Break}	dL at break	do	S_0	Details about break
Legend	No.	mm	mm	MPa	mm	mm	mm ²	
	3	4,9	4,9	266	8,9	6,01	28,37	ok
	6	5,0	5,1	289	9,0	6,01	28,37	ok
	7	5,3	5,4	278	10,5	6,02	28,46	ok
	8	4,3	4,4	296	9,1	6,02	28,46	ok
	10	5,1	5,1	287	9,1	6,02	28,46	ok
	16	4,2	4,3	300	8,1	6,01	28,37	ok
	17	5,2	5,3	278	9,7	6,03	28,56	ok
	18	3,7	3,8	258	6,6	6,02	28,46	ok
	19	4,1	4,2	290	7,6	6,02	28,46	ok
	20	4,0	4,0	285	7,3	6,03	28,56	ok
	21	4,0	4,1	285	7,5	6,02	28,46	ok
	22	4,8	4,8	280	9,9	6,03	28,56	ok
	23	4,0	4,0	277	7,5	6,01	28,37	ok
	25	4,1	4,1	261	8,2	5,99	28,18	ok
	26	4,0	4,1	302	7,3	6,01	28,37	ok
	27	5,1	5,2	282	10,3	6,04	28,65	ok

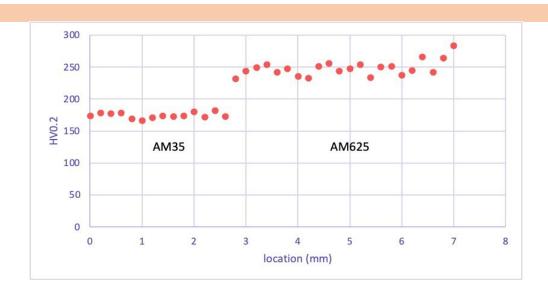
fatigue testing

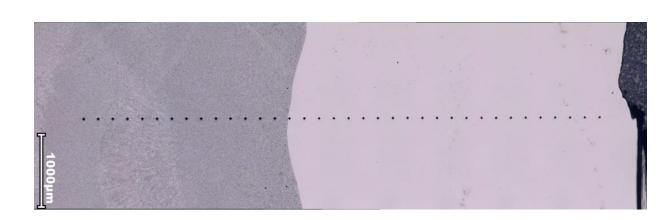




chemical composition across interface AM35-AM316L

Table 2.2: corrosion data on 316L deposit on AM35, 3.6 mm from the interface.




interface AM35 left AM316L right

micrograph AM35 bottom AM316L top

Bi material bottom AM35 top alloy 625

Microhardness across the interface AM35-AM625

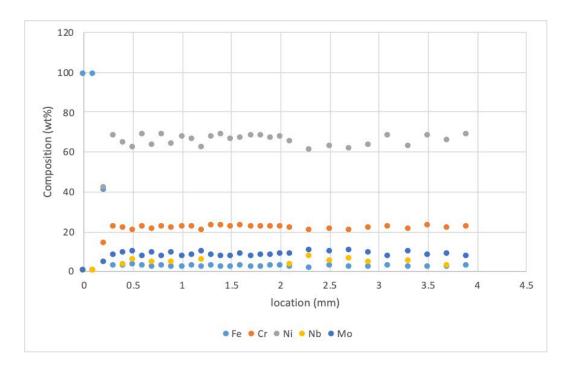
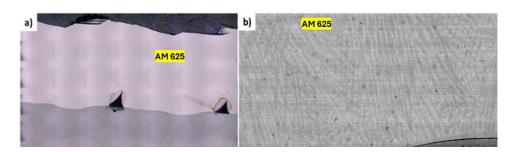
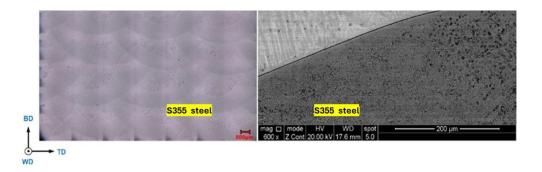
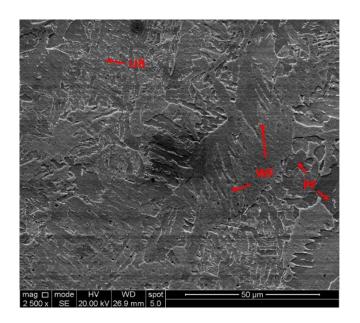
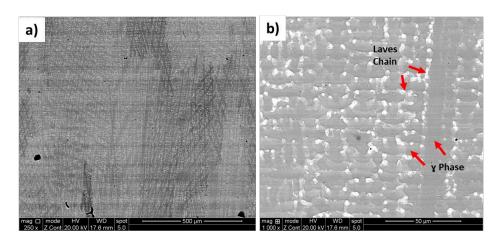
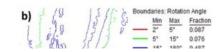
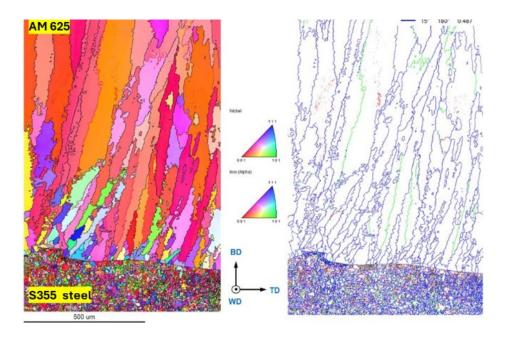





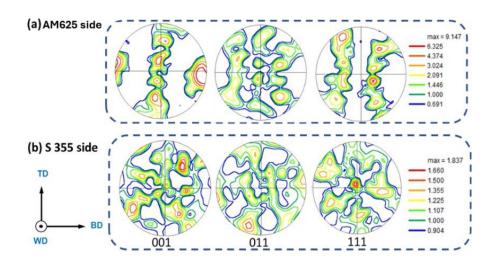
Figure 2.6: Composition across the interface AM35 - AM625



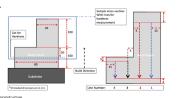
The interface region. The bottom part is AM355, and top region is AM625 superalloy (a): optical microscopy image, (b): SEM-BSE image

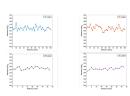


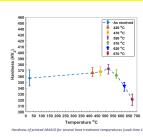

The microstructure of S355 steel, (UB: Upper bainite, PF: Polygonal ferrite, and WF: Widmanstatten ferrite)

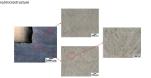

The microstructure of deposited AM625 superalloy

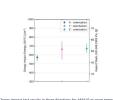
EBSD results for bi-material of AM355 steel -AM625 superalloy; a): Building direction-IPF map of Bi-metal AM355 steel -AM625 superalloy


The pole figures (PFs) of different parts of the bi-material of AM355 steel -AM625 superallo

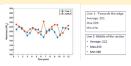

Table 2.3: corrosion data on alloy 625 deposit on AM35, 4.1 mm from the interface.



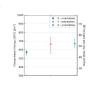

Mobile ring EDF, NAVAL Group

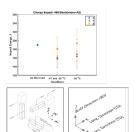


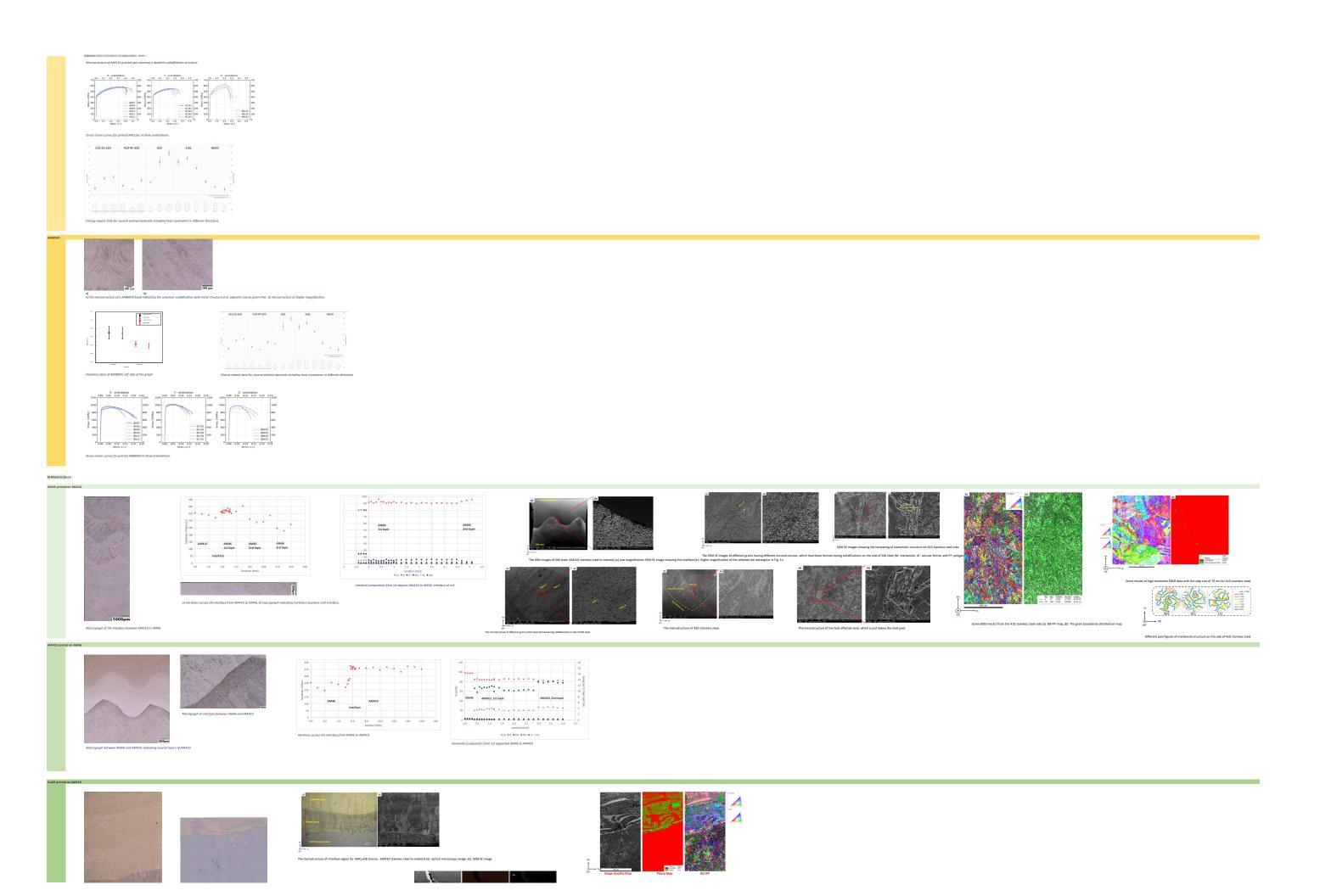
esting							
	E_mod	yield_S	tensile_S	elong	RA.	Impact_W	Impact_
n	- 4	- 4	-4	4	4	3.000000	3.0000
min	199.526	846.331	1101.06	14.3939	\$5.5556	595.255000	47.6200
max	177.79	766.867	1066.13	2.72818	2.98738	535.277000	41.3130
ave	187,476	884,895	1083	8,50948	38,6655	571.678667	44,9938
std	7.7749	37.3957	16.8864	5.78176	20.825	26.111390	2.6803
	E mod	vield S	tensile S	elong	RA.	Impact W	Impact
n						3.000000	
min	188,307	955,544	1109.77	15.7221	57.1649	750,548000	59,4628
max	170,536	878,221	1090,28	7,45475	14.3914	550,611000	42,9700
avg	181.007	914.352	1099.3	13.3788	48.0747	663.725333	52.2343
std	6.41887	29.9992	5.84315	2.79135	15.1452	83.714355	6.8851
	E mod	yield S	tensile S	elong	RA	Impact W	Impact
n	- 5	- 5	_5	5	5	3.000000	3,0000
min	178,43	932,818	1091,56	13,7483	59,9101	726,801000	58,0670
max	172,786	921.914	1861.9	10.8583	48,2273	622,831000	48,8168
ave	175,478	927,881	1078.54	12.8484	54,1549	670.120667	53,8498
std	2.42628	4.56121	9.87069	1.03824	4.68812	42.961833	3.8172


	Yield (MPa)	UTS MPA)	Elong (%)	Charpy (3)	Charpy -20C (I)	HV					
X- (welding) direction	804± 37	1083 ±17	8.5	45 ± 2.7	32.6 ± 0.9	358					
Y- (transverse) direction	914 ± 30	1099 16	13.4	52.2 ± 6.8	40.8 ± 2.3						

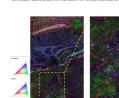
feat Treated 2hr 580 ℃											
	Yield (MPs)	UTS (MPA)	Clong (%)	Charpy (i) -20C	W						
- (welding) direction	949 ± 39	1040 ± 27	17.3	22.8 ± 10.6	350						
- (transverse) direction	966 ± 51	1040±24	17.3 (void)	40.8 ± 7.6							


condition	n	ave energy (J)	st dev energy (J)
620 °C, 2hr, x-direction	4	48,1	5,1
620 °C, 2hr, y-direction	3	78,9	5,8
620 °C, 2hr, z-direction	4	84,2	4
620 °C, 4hr, x-direction	4	56	3
620 °C, 4hr, y-direction	1	44,9	
620 °C, 4hr, z-direction	4	73	5,6



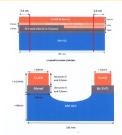


| Hardness as a function | 100



	Traffic Structure
110	-4 Linu.

		Post-We treat		Testing condition					
As-receive	d	No	ne	Room ten	nperature				
HT and -20	С	55C/h wa soak @ 58 cool-i	OC, 55C/h	-20C (cooled down with liquid nitrogen					
-20C		No	ne	-20C (coo with liquid					
X-Orientation		AVG	STD	MIN	MAX				
As-Received	3	189.7	1.6	188.4	192.0				
HT and -20C	2	157.9	14.8	143.1	172.6				
-20C	3	163.5	9.4	150.3	171.5				
Y-Orientation	n	AVG	STD	MIN	MAX				
As-Received	0								
HT and -20C	3	161.0	4.1	155.8	165.9				
-20C	2	168.5	24.1	144.4	192.5				
Z-Orientation		AVG	STD	MIN	MAX				
As-Received	0								
HT and -20C	2	196.1	4.6	191.5	200.6				
-20C	3	193.5	25.8	162.3	225.5				

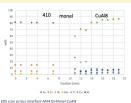


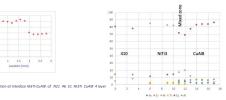
	90	1st layer	2nd	layer	3rd layer	4th layer
V	70			٠.	•	5.0
	AM410 interf	ace				Cu Al8
W	50 So	. · ·		•		
	000	2842	::			
Interface CuAI8	8 30	٠				
	20					
8.0 10.0 12.0 14.0 16.0 18.0 location (mm)	****		٠.			

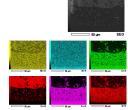
M410 to C. 4/0	-1 0		1	2	3	4 5

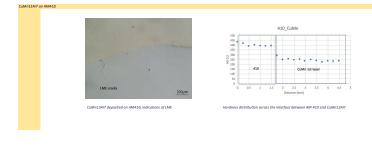
1 2 3 4
location (mm)

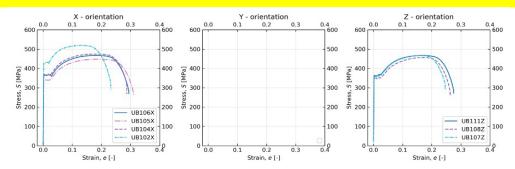
• Fe • N • SI • Cr • Mn • NI • Cu • Mo

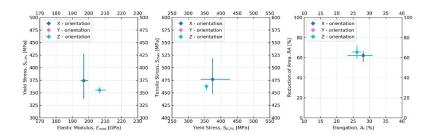

Sample	Run	OCP 12h	E corr (mV)	Lour (µA)	I con	EW	ρ (q/cm²)	CR (mm/yr)	
, .		(mV)			(µA/cm²)		7 10- 7	,,,	_
N1221C1*	1	-251,1	-222,327	0,18	0,229	26,28	7,7	0,0026	AM410 on AM4
N1221C1	2	33.15	-53.77	0.013	0.017	26.28	7.7	0.0002	AM410 on AM4
N1221C2*	1	-359,2	-346,807	2,071	2,637	26,28	7,7	0,0294	AM410 on AM4
N2151C1*	1	-253,2	-264,691	3,523	4,486	38,91	7,78	0,0734	CuAl8 on AM41
N2151C2*	1	-216,5	-264,331	5,4	6,875	38,91	7,78	0,1125	CuAl8 on AM41

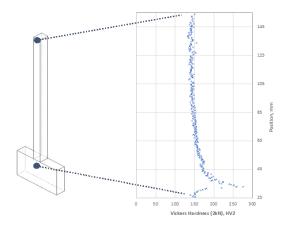


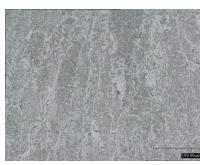


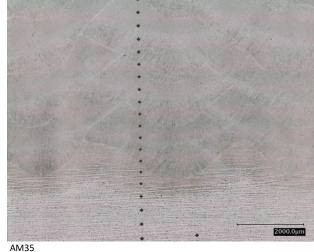




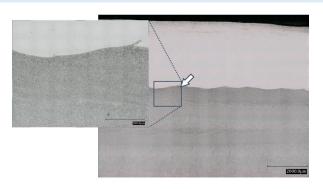



single wall 3D Print AM35


stress - strain curves for the printed AM35 steel in the welding direction (x) and the building direction (z).


tensile test results for the printed AM35 steel in the welding direction (x) and the building direction (z).

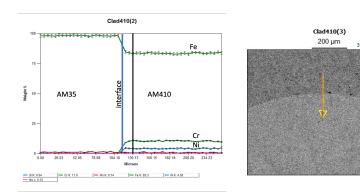
hardness as function of build height

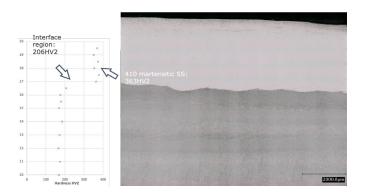


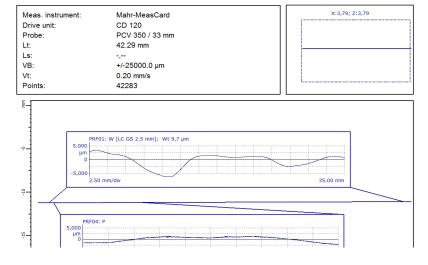
micrographs AM35
a) Columnar solidification structure b) fine grained heat affected zone

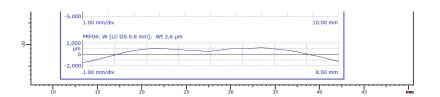


macrostructure

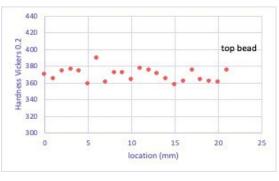

Bi material AM35 - AM410

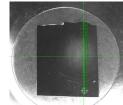

Bi-material block AM35 bottom part and martensitic stainless steel AM410 top part. Interface region without apparent discontinuities, Etchant: Nital 5 %


Interface region, top martensitic stainless steel AM410, bottom fine grained AM35. apparent discontinuities, Etchant: Nital 5%.



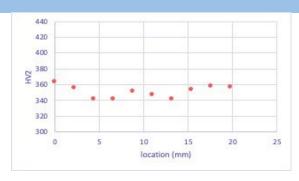
Line scan across interface from AM35 to AM410.


Hardness HV2, along the building direction of coupon R-1121-(PRJ-B1-002



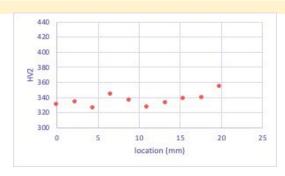
Roughness profile of polished sample surface

Alternative top-facing materials 3Dprint AM410NiMo



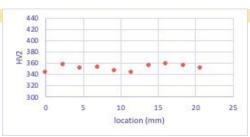
Cross sectional micrograph of AM410NiMo, untreated.

3Dprint AM410NiMo: heat treated


Hardness measurements in the build direction. O represents the top surface, heat treated

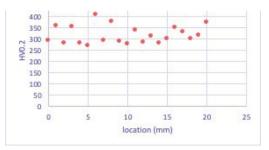
micrograph of heat treated 3Dprint AM410NiMo

Thermanit16/05 Mo



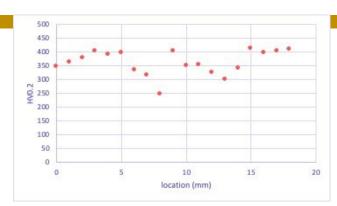
Hardness measurements in the build direction, location 0 is at the top surface. average 336 HV $_{2.0}$, st dev 8.4 HV $_{2.0}$, untreated

Micrograph of Thermanit16/05 Mo, untreated


Thermanit16/05 Mo heat treated

Hardness measurements in the build direction, location 0 is at the top surface, heat treated

Micrograph of cross section, heat treated.



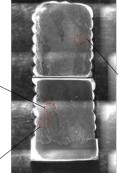
Microhardness in printed block UTP Dur250, top at location 20 mm

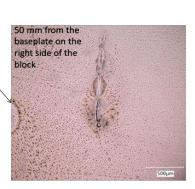
micrograph of top layers, UTP Dur250

Microhardness as function of location, top layer is at 20 mm

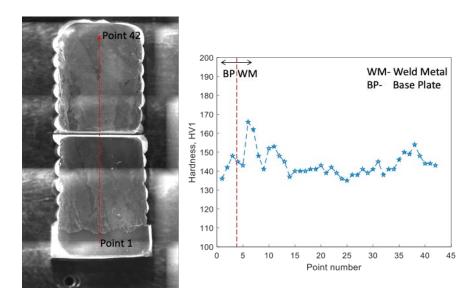
macrographs of Bohler SKWAM-IG, Inomaxx® Plus gas shielding

1.3912 - FeNi36


macrographs


GMAW

25 mm from the baseplate on the left side of the block


16 mm from the baseplate on the left side of the

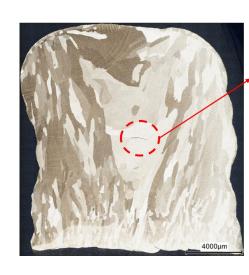
block

Cross section of FeNi36 block 3 with indications of intergranular cracks

Hardness distribution HV1 along FeNi36 block 3

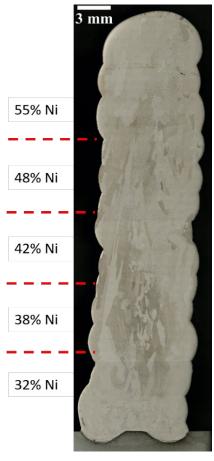
1.3912 - FeNi36

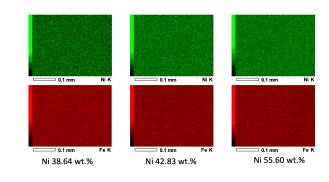
GTAW



a) b)

:two examples of cross section of FeNi36 deposits a) $I=130~\text{A},~\text{v}_{travel}=4.6~\text{mm/s},~\text{v}_{wire}=21.7~\text{mm/s},~\text{heat input 200 J/mm},~\text{b)}~\text{I}=218~\text{A},~\text{v}_{travel}=3.3~\text{mm/s},~\text{v}_{wire}=49.4~\text{mm/s},~\text{heat input 550 J/mm}$





Intergranular Crack

a) b)

a) construct welded with low heat input 200 J/mm, b) construct welded with high heat input 550 J/mm, showing an intergranular crack

b)

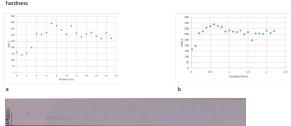
1)

a) Graded FeNi wall, b) EDS measurements at bottom, middle and top of the wall showing a homogeneous distribution of Ni and Fe

Coefficient of thermal expansion of FeNi36 plate material. Comparison induction heating, material specification and furnace heating for different temperature ranges. Induction heating TUD, furnace heating at Element (Sweden)

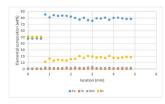
Mean CTE	Induction heating (× 10 ⁻⁶ °C ⁻¹)	Material specification (× 10 ⁻⁶ °C ⁻¹)	Furnace heating (× 10 ⁻⁶ °C ⁻¹)
20-100 °C-	2.04	1.30	1.36
20-149 °C-	2.50	2.11	2.01
20-260 °C-	5.12	4.18	4.67
20-360 °C-	8.21	7.60	7.57

Coefficient of thermal expansion of FeNi 36 plate material, furnace heating conducted at UTwente and at Elements, for different temperature ranges


Mean CTE	UTwente (× 10 ⁻⁶ °C ⁻¹)	Elements (× 10 ⁻⁶ °C ⁻¹)
RT-100 °C-	1.33	1.36
RT-200 °C-	2.69	2.70
RT-300 °C-	5.84	6.01
RT-400 °C-	8.36	8.63
RT-500 °C-	10.14	10.32

Coefficient of thermal expansion of FeNi 36 printed material for a heat input of 200 J/mm and 550 J/m for samples in the building direction (vertical) and the printing direction (horizontal). Furnace heating carried out at UTwente

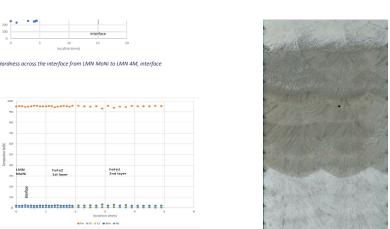
Mean CTE	200 J mm ⁻¹ Vertical (× 10 ⁻⁶ °C ⁻¹)	200 J mm ⁻¹ Horizontal (× 10 ⁻⁶ °C ⁻¹)
RT-100 °C-	1.40	1.39
RT-200 °C-	2.74	2.67
RT-300 °C-	5.85	5.73
RT-400 °C-	8.34	8.15


Mean CTE	550 J mm ⁻¹ Vertical (× 10 ⁻⁶ °C ⁻¹)	550 J mm ⁻¹ Horizontal (× 10 ⁻⁶ °C ⁻¹)
RT-100 °C-	1.48	1.27
RT-200 °C-	2.79	2.60
RT-300 °C-	5.92	5.81
RT-400 °C-	8.32	8.36

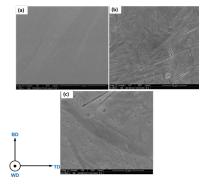
tensile tests Table 6.1: Corrosion test data for printed AM62, CR is corrosion rate. | Sample | Run | N6200C2 | (Shapers | 1 | Sol) | N6200C2 | (3.0wt NaCl) | 2 | OCP $_{12h}$ E_{corr} (mV) I_{corr} (μ A) i_{corr} (μ A/c


-636 -573,3 8,008 10,196 28,61 7,86 0,1214

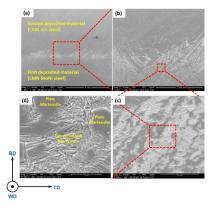
 $Hardness\ across\ the\ interface\ from\ LNM\ NiFe\ to\ LNM\ MoNi,\ a)\ along\ line\ A\ in\ figure\ 6.3c,\ b)\ along\ line\ B\ in\ figure\ 6.3c,\ c)\ location\ of\ indents\ across\ interface.$



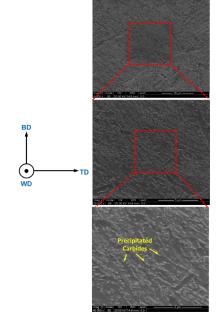
: Macrograph of the interface LNM NiFe (bottom)- LNM MoNi (top). Indications of cracks



Macrograph bottom layers LNM MoNi , top layers LNM 4M (Fe-Fe2)



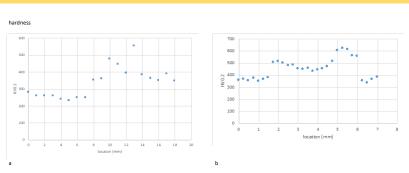
Micrograph top layer LNM 4M



Chemical composition across the interface LMNMoNi -LNM 4M (FeFe2

The microstructure of top layer of deposited LMN 4M steel, SEM-SE images in different magnifications

e microstructure of the interfacial region between LMN MoNi and LMN 4M steels; SEM-SE images in different magnification:



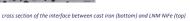
SEM-SE images showing the microstructure of deposited LMN MoNi steel located in the middle region of the sample

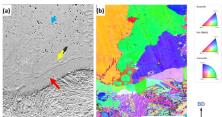
Tri layer deposit

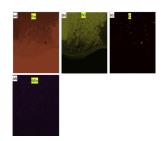


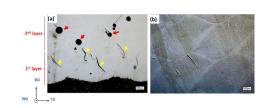
Macrograph of coupon N-626162 Tri

Hardness profile over the cross section, right hand side is top of the sample (AM62), a) global profile, b) local (starting from location 8 mm in a) to 15 mm)

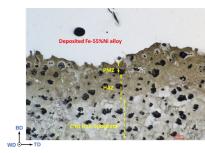

Micrograph of cracks in FeFe2 and mixed zone FeFe2-AM62

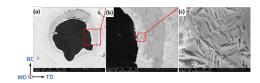

LNM NiFe + cast iron G-500-7

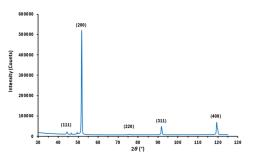

Cross section of the interface between cast iron (bottom) and LNM NiFe (top), showing the distribution of the grafite and defects in the top layer



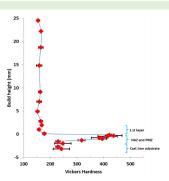
The microstructural change across the interfacial region between PMZ and deposited material (a) SEM image and (b)BD- IPF image from EBSD data

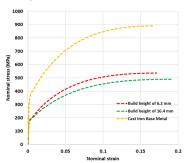



EDS maps taken from the PMZ/deposited alloy interface

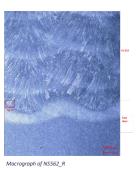


Formation of some defects during fabrication of bimetallic structure in the (a) first and second deposited layers and (b) following layers

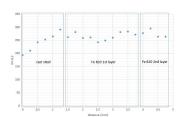


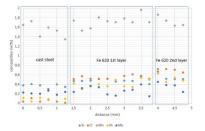


: SEM images of the microstructure around the graphite nodules in $\ensuremath{\mathsf{PMZ}}$



The XRD results for deposited Ni-45% Fe layers

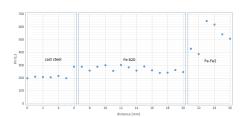


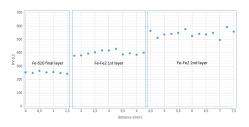

Location of the indent	Yield Strength (MPa)	Ultimate tensile Strength (MPa)	Uniform Elongation (%)
Cast Iron-base metal	355	895	17.5
Point 1 on Ni-Fe alloy (height of 6.23 mm)	172	536	17.4
Point 2 on Ni-Fe alloy (height of 16.46 mm)	171	494	20.2
According NS Co allow 8	220	400	24

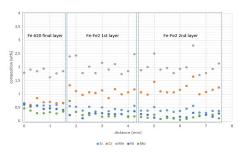
Hardness HV $_{\rm 0.2}$ of NS562_R from cast steel through to final layer of Fe 620

Hardness HV $_{\rm 0.2}\,$ of NS562_R of cast steel, first and second layer of Fe 620

EDS measurements on NS562_R of elements Si, Cr, Mn, Ni and Mo across the interface

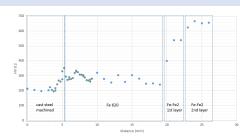

Cast steel + AM62 + FeFe2


Macrograph of NS56261_R


Micrograph of fusion line between first and final layer of Fe-Fe2. Hardness Vickers indents are seen

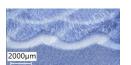
Hardness of NS56261_R cast steel through to Fe-Fe2

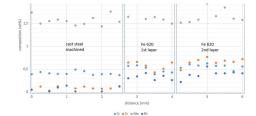
Hardness of NS56261_R Fe 620 final layer through to Fe-Fe2 final layer



EDS of alloying elements of Fe 620 final layer, and first and second layer of Fe-Fe2

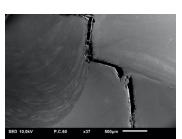
Cast steel + AM62 + FeFe2 interpass milling between different deposited materials



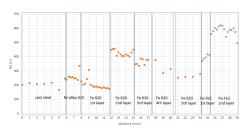

NS56261_M hardness.

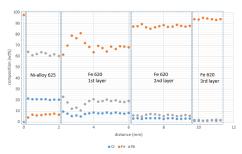
2.5				
-,-				
2				

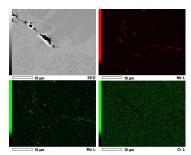
Macrograph of NS56261_M

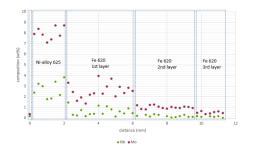


NS56261_M EDS of elements Si, Cr, Mn, and Ni.


Cast steel, Inconel 625 + AM62 + Fe-Fe2

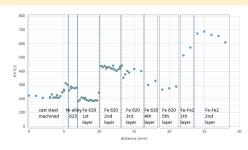

Macrograph of NS5826261_R


SEM-micrograph of crack in Fe 620 along fusion boundaries and in the weld beads

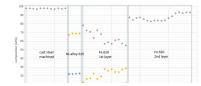

NS5826261_R hardness

NS5826261_R EDS of elements Cr, Fe, and Ni. Fe 620 1st layer shows an irregular distribution of elements
NS5826261_R EDS of elements Nb and Mo

EDS mapping of elements Nb, Mo, and Cr in the area surrounding a crack in Fe 620 show segregation of Nb and Mo

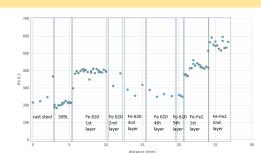


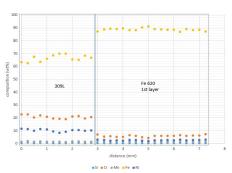
cast steel machined, Inconel 625 AM62 + Fe-Fe2



Micrograph of cracks in NS5826261_M

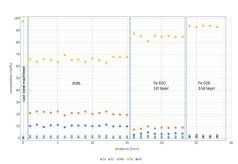
Hardness of NS5826261_M


: Macrograph of NS5826261_M


EDS of NS5826261_M

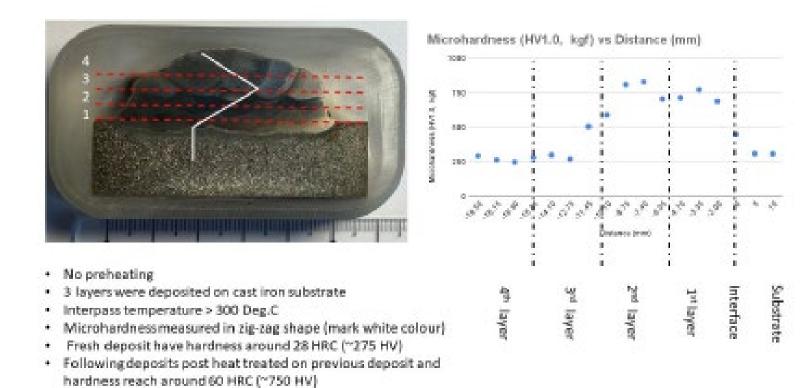
cast steel _AISI309L + Fe620 + Fe-Fe2

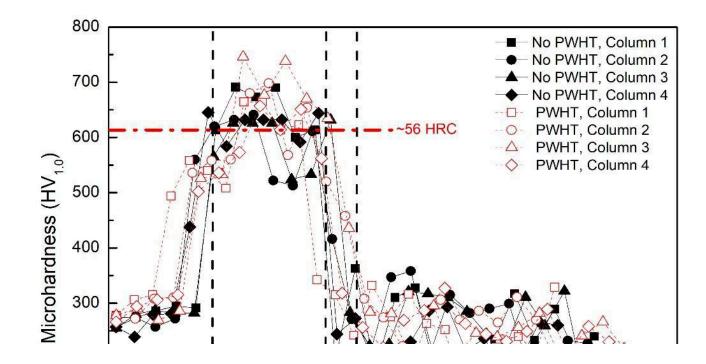
Macrograph of NS5916261_R

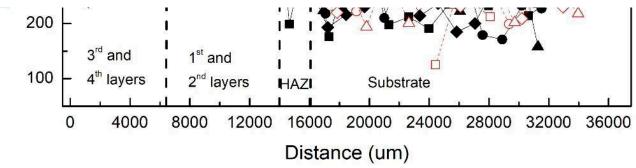


EDS of NS5916261_R of elements Si, Cr, Mn, Fe, and Ni

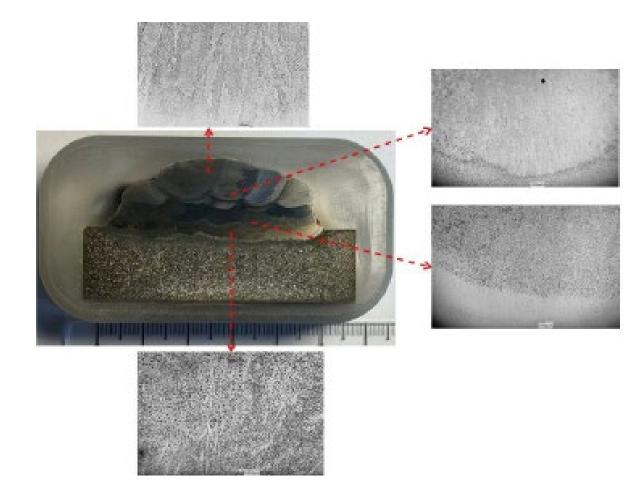
cast steel _AISI309L + Fe620 + Fe-Fe2




Hardness of NS5916261_M


EDS results of NS5916261_M of elements Si, Cr, Mn, Fe and Ni

AM Fe4MC1 deposited on the GGG70L steel



a) indication of the hardness measurement pattern; b) hardness measurements of the as weld and after PWHT of AMFe4MC1 (GRADE 2XLB4-05) deposit on GGG70L

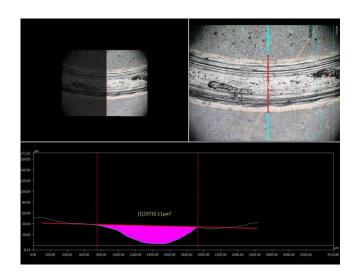
Overview and micrographs of the deposited sample.

material

Base material 1.2312 / cladded with patented Aluminium Bronze P20

copper aluminium iron flux core wire CuAl13,5Fe4,0 or alternative material to be specified by LSW

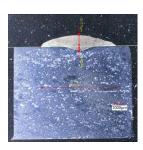
Base material 1.2312/patented Aluminium Bronze


- '	Har	dness	AD
Meritev/ Measurement	Vz.1 / B5 Sample Hardnes s[HRc]	Vz.2 / B4-1 Sample Hardnes s[HRc]	Vz.3 / B4-2 Sample Hardnes s[HRc]
1	23,60	23,20	18,30
2	24,30	27,30	20,50
3	22,20	13,00	17,20
4	23,00	11,10	20,10
5		26,70	
Average	20,26	23,28	19,03
Required	36,30	56,00	56,00

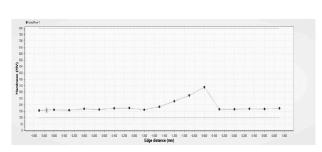
Hardness measurements of B5 sample, ISO 24373 - S Cu 6338 (CuMn13Al8Fe3Ni2) expected hardness 220 HB according technical data sheet which is roughly 20 HRC

Top view tested samples and profile of the wear, a) AMPCO25

Sample 1 (patented Aluminium Bronze)
Test 1: 75.92 +/-4.05 * 10-6 mm3/N.m (6 mm radius)
Test 2: 77.44 +/-3.70 * 10⁻⁶ mm3/N.m (8 mm radius)

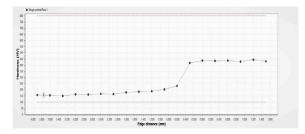

Top view tested samples and profile of the wear, b) ISO 24373 - S Cu 6338 (CuMn13Al8Fe3Ni2).

Sample 2 (S Cu 6338)

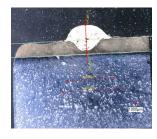

Test 1: 316.16 +/-59.70 * 10-6 mm3/N.m (radius 6 mm)
Test 2: 120.94+/-40.81 * 10-6 mm3/N.m(radius 8 mm)

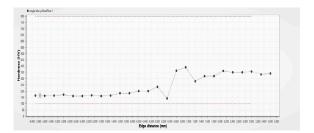
Test 3: 163.70 +/-39.04 * 10-6 mm3/N.m

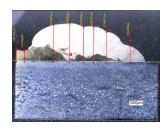
S355 + ASME SFA 5.7 Class ER CuAl-A2 (buffer) + copper aluminium iron flux core wire CuAl13,5Fe4,0

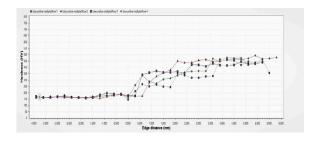


S355 steel plate, + buffer material

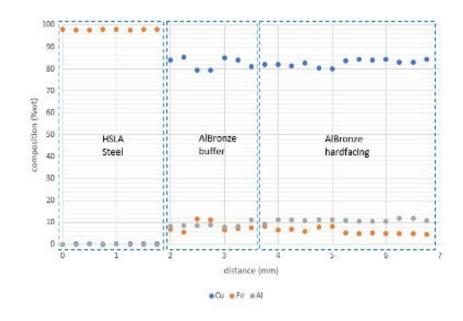


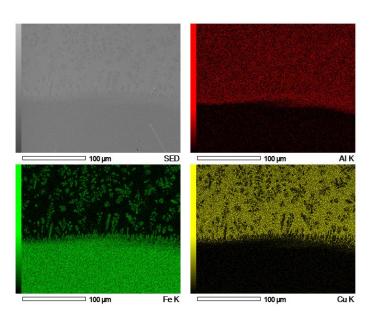

hardness


S355 steel plate, + hard-facing material hardness



S355 steel plate, + buffer material + 1 layer hard-facing material

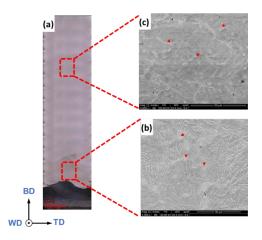

hardness



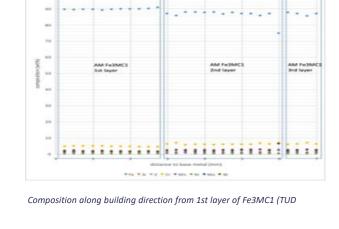
S355 steel plate, + buffer material + 2 layer hard-facing material

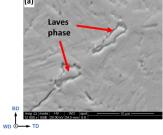
hardness

EDS measurements of Cu, Fe and Al on the sample containing S355, buffer layer and hard-facing layer

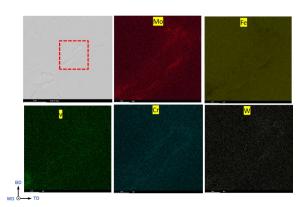

EDS area scans at the interface S355 and buffer layer

Bi Material Block

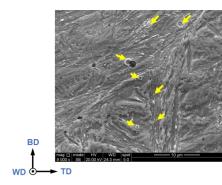

Fe3MC1-S355



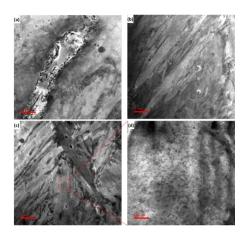
The printed H20-PRJ-B6-001 coupon



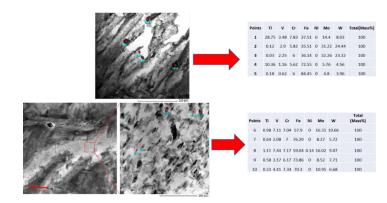
(a) The macrostructure of deposited Fe3MC1 alloy, (b) The SEM image of the first deposited layer and (c) The SEM image of the following deposited layers



(b) Fe-6.0Cr-0.7Mn-2.5Mo-0.4Ni-0.5Si-0.7V-2.0W-0.3C-0.02P wt(%

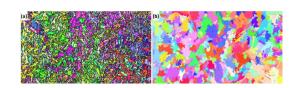


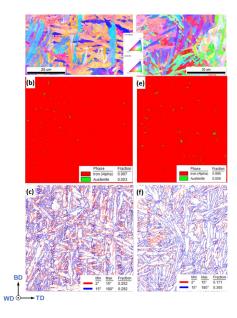
The EDS map of the precipitated Laves phase

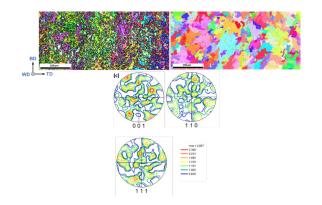


SEM image showing the formation of fine precipitates in Fe3MC1 alloy.

Formation of Laves phases in deposited Fe3MC1 alloy, (a): SEM image and (b) analyses of the solidification path using the JMat-Pro software.

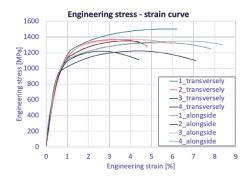



STEM images of carbide precipitation in the martensitic structure of deposited Fe3MC1 alloy.



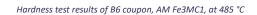
The chemical composition of some carbides within the martensitic structure of deposited Fe3MC1 alloy





(a): BD-IPF of martensitic structure in third deposited layer, (b) Reconstructed prior austenitic structure grains for fig. 19a, and (c) Different pole figures of martensite extracted from Fig. 19a

Some EBSD results from deposited Fe3MC1, left column: the first deposited layer and the right column is: following deposited layers (a) and (d) BD-IPF map, (b), and (e): Phase map, (c) and (f): The grain boundaries distribution map


	m _E	R _{p0.2}	R _m	A_t
	GPa	МРа	MPa	%
1_transverse ly	205,01	1108,48	1502,70	6,2
2_transverse ly	172,46	1038,92	1369,15	4,8
3_transverse ly	239,28	900,20	1219,88	4,4
4_transverse ly	196,14	967,87	1351,46	4,6
1_alongside	197,20	1327,67	1328,42	7,9
2_alongside	205,80	880,20	1221,55	7,1
3_alongside			1368,34	6,0
4_alongside	205,73	1025,52	1347,15	8,4
2_alongside 3_alongside	205,80	880,20	1221,55 1368,34	7,1 6,0


true stress strain curves at 500 °C

Engineering stress strain curves at 500 °C

Youngs Modulus, Yield strength, Ultimate tensile strength and Area reduction of tensile tests at 500 °C (PWR)

layer	temperature	Hardness (HRC)	Average hardness (HRC)	comment
1	485°C	40,57 41,83 41,9	41,43	layer is not tempered
2		27,73 35,67 32,84	32,08	
3		35,10 36,61 30,70	34,13	
4		35,21 41,21 40,66	39,02	

Vickers hardness (HV0.1) map at the sample surface at room temperature. Left image indicates the base plate blue (\$335J2) Right side the top-layer of the coupon. (PWR)